2018-2019

Title	Syllabus Distribution
Session	2018-19 (Even Semester)
Department	B.Sc General in PHYSICS
Institution Name	Hiralal Bhakat College, Nalhati, Birbhum, W.B.
Coordinator	Md Ashik Mondal , SACT in PHYSICS

Details of Courses of B.Sc. General under CBCS

SI.	Course	Credit	Marks	
1.	Core Course (12 Papers)	Theory+Practical	Theory+Tuitorial	12×75=900
	4 core papers each in 3 disciplines of choice	12×(4+2)=72	12×(5+1)=72	
2.	Elective Course DSE	6×(4+2)=36	6×(5+1)=36	6×75=450
	(6 Papers)			
3	Ability Enhancement Core			
	Course (AECC)	4×1=4	4×1=4	100
	AECC-1 (ENVS)	2×1=2	2×1=2	50
	AECC-2 (English/MIL)			
4.	SEC (4 Papers)	4×2=8	4×2=8	4×50=200
	Total Credit:	122	122	1700

B.Sc. PHYSICS General Course Structure

Semester	Course Course (CC)	Discipline Specific Elective (DSE)	Ability Enhancement Course		
			AECC (2)	SEC(4)	
I	CC1A (Mathematics) CC2A (Physics) CC3A (Computer Sc.)		AECC-1		
II	CC1B (Mathematics) CC2B (Physics) CC3B (Computer Sc.)		AECC-2		
ш	CC1C (Mathematics) CC2C (Physics) CC3C (Computer Sc.)			SEC-1 (Mathematics) or SEC-1 (Computer Sc.)	
IV	CC1D (Mathematics) CC2D (Physics) CC3D (Computer Sc.)			SEC-2 (Mathematics) or SEC-2 (Computer Sc.)	
V		DSE1A (Mathematics) DSE2A (Physics) DSE3A (Computer Sc.)		SEC-3 (Computer Science) or SEC-3 (Physics)	
VI		DSE1B (Mathematics) DSE2B (Physics) DSE3B (Computer Sc.)		SEC-4 (Computer Science) or SEC-4 (Physics)	

<mark>Semester-II</mark>

CoreCourse (CC 2B): ELECTRICITY AND MAGNETISM

Syllabus	Number of Lecture	Course	Name of Teacher
Vector Analysis: Review of vector algebra (Scalar and Vector product), gradient, divergence, Curl and their significance, Vector Integration, Line, surface and volume integrals of Vector fields, Gaussdivergence theorem and Stoke's theorem of vectors (statement only).	12L		Md Ashik Mondal
Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of electrostatics. Applications of Gauss Theorem- Electric field due to point charge, infinite line of charge, uniformly charged spherical shell and solid sphere, plane charged sheet, charged conductor. Electric potential as line integral of electric field, potential due to a point charge, electric dipole, uniformly charged spherical shell and solid sphere. Calculation of electric field from potential. Capacitance of an isolated spherical conductor. Parallel plate, spherical and cylindrical condenser. Energy per unit volume in electrostatic field. Dielectric medium, Polarisation, Displacement vector. Gauss's theorem in dielectrics. Parallel plate capacitor completely filled with dielectric.	22 L	CC	
Magnetism: Magnetostatics: Biot-Savart's law & its applications- straight conductor, circular coil, solenoid carrying current. Divergence and curl of magnetic field.Magnetic vector potential.Ampere's circuital law. Magnetic properties of materials: Magnetic intensity, magnetic induction, permeability, magnetic susceptibility. Brief introduction of dia-, para- and ferro-magnetic materials. (10 L		
Electromagnetic Induction: Faraday's laws of electromagnetic induction, Lenz's law, self and mutual inductance, L of single coil, M of two coils. Energy stored in magnetic field.	6L		
Maxwell's equations and Electromagnetic wave propagation: Equation of continuity of current, Displacement current, Maxwell's equations, Poynting vector, energy density in electromagnetic field, electromagnetic wave propagation through vacuum and isotropic dielectricmedium, transverse nature of EM waves, polarization.	10L		

Practical:

1. To use a Multimeter for measuring (a)Resistances, (b)AC and DC Voltages, (c) DC Current, and (d) checking electrical 2. Ballistic Galvanometer: (i) Measurement of charge and current sensitivity (ii) Measurement of CDR 3. To compare capacitances using De'Sauty's bridge.

4. To study the Characteristics of a Series RC Circuit.

5. To study the a series LCR circuit and determine its (a) Resonant Frequency, (b) Quality Factor

6. To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and (b) Quality factor Q

7. To determine a Low Resistance by Carey Foster's Bridge.

Reference Books

Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971, Asia Publishing House.
A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11thEdition, 2011, Kitab Mahal, New Delhi.
Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.
Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4thEdition, reprinted 1985, Heinemann Educational Publishers

Coordinator Science Wing Hiralal Bhakat College Mad Achilo

Head Department of Physics Hiralal Bhakat College Nalhati,Birbhum

Esha.

Signature,

Teacher-in-Charge HiralalBhakat College Nalhati, Birbhum.

Teacher- in- Charge Hiralal Bhaket College Nalhati, Birbhum